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1. MCRA, an introduction 
The program MCRA can be used for assessment of acute and chronic risks due to the intake of 
residues on food. The program is the result of an ongoing co-operation between RIKILT and 
Biometris since 1998. The program is written in the statistical package GenStat (2000), and therefore 
requires that GenStat is installed. An earlier version of the GenStat program as well as a simple 
version in @Risk (1996) have been described in Van der Voet et al. (1999). Most options in the 
program described here can also be found in Van der Voet et al. (2001) and De Boer & Van der Voet 
(2000, 2001). 

1. 1.Overview 
Before running a Monte Carlo risk assessment it is useful to give a short description of the program, 
options and data files to get you acquainted as quickly as possible.  
A Monte Carlo risk assessment is performed with MCRAddmmyyyy.gen with string ddmmyyyy 
representing the date of the current version of the program. MCRA, in short, is available as stand-
alone version or as internet application. The stand-alone version requires that the specification form, 
library and all necessary datafiles are placed on a local disk drive. The internet version requires that 
the program MCRA, datafiles, library and supporting ActiveX-controls are installed on a server. 
 
MCRA provides the following options: 
• acute risk assessment 
• chronic risk assessment 
• parametric or non-parametric modelling of residue levels 
• modelling of processing effects 
• modelling of sample variability 
• modelling of non-detects levels 
• restrictions on age and/or days 
• consumers only 
 
To run a Monte Carlo risk assessment with a stand-alone version of MCRA the following files are 
needed: 
 
Basic files  
MCRAddmmyyy.gen 
MCRAlib  
MCRA-input.xls 
individuals.lis 

GenStat program 
procedure library 
specification spreadsheet 
data on consumer characteristics 

Standard data files  
####_con.lis 
####_res.lis 
####_nos.lis 
####_pro.lis 
####_cmp.lis 

consumption data and processing codes 
residue concentration data 
total number of samples 
commodity code and labels 
residue label 

Optional data files  
####_varf.xls 
####_proc.xls 
####_crtr.xls 
####_histo.xls 
####_sum.xls 

variability factors 
processing factors 
data on percent crop treatment 
histogram data 
summary data 

proccode.xls processing codes and labels 

Table 1: Requirements for a stand-alone version of MCRA. #### indicates a residue specific 
code. 
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For a risk assessment based on a model in its simplest form (see 4. 1), only the basic and standard data 
files (see Table 1) are required. To run a more extended version of the model, all optional data files 
are needed.  
The following diagram illustrates the MCRA program in its working environment and shows what 
output is generated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Environment of the stand-alone version and the internet application of MCRA 

Figure 1 shows that for the stand-alone version a specification spreadsheet MCRA-input.xls is needed 
to specify the model. For the internet application, the user is requested to fill out on-line an input form 
and submit this to the server. In both applications, basically, the same program MCRA is running. In 
the internet version, graphs are customised to communicate with an ActiveX-aware browser. The 
client-side ActiveX control comprises a ComponentOne Chart control1. Clients are allowed to modify 
the chart they view on the web page. The stand-alone version generates three graphs which can be 
printed or saved as .emf. Both versions generate tables with results on percentiles, summaries of the 
total and upper tail of the intake distribution, contributions of commodities and consumer top 10’s.  

                                                      
1 ComponentOne WebChart 7.0, Charting tool for browser-independent Web server applications. 
 

MCRA 

Internet version Stand-alone version 

Basic files 
Standard data files 
Optional data files 

Specification of model 
through: 
MCRA-input.xls 

Specification of model 
through online: 
Input Form 

Internet version 
charts: total distribution 

upper tail distribution 
acute percentiles 
contribution upper tail 
contribution total distr. 
mean residues  
diagnostics Nusser 
chronic percentiles 

Stand-alone version 
graphs: total distribution 
 upper tail distribution 
  
 
 
 

diagnostics Nusser 

tab1.lis:  summary data base 
tab2.lis:  summary simulation results 
tab3.lis:  acute percentiles 
tab4a.lis: summary contribution upper tail intake distribution 
tab4b.lis: summary contribution total intake distribution 
tab5.lis:  consumer top 10, intake per commodity  
tab6.lis:  consumer top 10, consumption per commodity 
tab7.lis:  consumer top 10, residue per commodity 
nusser.lis: chronic percentiles 
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1. 2.Flow diagram of MCRA 
After the model is set (specification spreadsheet or on-line input form), a Monte Carlo risk analysis is 
performed. The program MCRA is composed of a set of procedures which may be arranged into four 
main blocks. All procedures are shortly described in 5. 1. The main tasks of block 1 to 4 are: 
1. reading of data (residue concentration data, consumption data, consumer characteristics, 

processing factors, variability factors, percent crop treatment) 
2. pre-processing of datastructures (age and/or day restrictions, consumers only, processing or not, 

variability factors, estimation of parameters for a parametric model), determining number of 
loops, chunksize, etc. 

3. simulation of exposure values (parametric, non-parametric)  
4. generating output (intake distribution, contribution to upper tail, characteristics of consumers with 

the highest intake, etc…)  
In Figure 2, a schematic outline of the blocks with the most relevant procedures is presented.  
 

Block 1
PRODLABREAD   CMPLABREAD   INDIVIDUALSREAD   CONSUDATREAD

PFLABREAD   PFDAT(READ)  PRPFLAB   VFREAD

LOGNPARA   NPNRPRO  (%)PRESENT
DAY%CONSUDATREAD  %CONSUDATREAD

CHCKS  TABPOOLING

Block 2:
POOLING
N(V/M)HOMOGE

Block: 2
NOPOOLING

Block 4:
TABxPRINT, PLTOTDISTR, PLUPDISTR

SDATREADHDATREADFDATREAD

Block 3:
CNSMPTNSIMU: sample individuals and consumption patterns

ESIMU: non parametric PSIMU: parametric

sample residue concentration data

calculate intake values

PFSIMU: simulate processing factors

VARFAC: calculate unit weights

LORREPLACE

re-sample residues for unit weights

process residues

NUSSER GAMMA
VCREML
%INTERPOLATE  

Figure 2: Schematic outline of MCRA 
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2. MCRA stand-alone version, documentation and specification of input 
In this section, a description is given of the stand-alone version of the program MCRA. 
Before running a Monte Carlo risk analysis with MCRA, inputs, the model and requested output are 
specified in a specification spreadsheet MCRA-input.xls (Figure 3).  
 

Figure 3: MCRA stand-alone version: input form MCRA-input.xls 

2. 1.Inputs 
First of all, the name of the residue is specified using a three or four letter code ‘xxxx’ which refers to 
residue specific files (see 5.3.2, 5.3.3). For example, Iprodione may be specified using ‘ipro’ which 
refers to e.g. residue concentration data file ipro_res.lis. All inputs concerning concentration and food 
consumption data are specified in the Inputs part of the form by setting the cell content of the 
relevant option to yes or no.  

2.1.1.Percent crop treated 
In Figure 3, non-detects are replaced (yes) by the LOR (0.02 ppm) (see 4.2.4). and replacement is 
based on the percent crop treated data (replace all non-detects = no) on file ipro_crtr.xls (see 5.3.3).  

2.1.2.Data 
In the example, the simulation is based on empirical concentration data (yes) (see 5.3.2), so options 
summary or histogram data are not relevant (options are suppressed). When option empirical 
concentration data is set to no, a parametric version of the model is running based on either full data, 
summary data or histogram data. Usually, a parametric version based on full data is specified by 
setting options summary data and histogram data to no (Figure 4). 
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3
4

5
6
7
8
9
10
11
12
13
14

A B C D

Inputs

Concentration data  
Replace nondetects by LOR: yes
if yes, replace all nondetects: no
     data on file xxx_crtr.xls
Limit of reporting:

LOR (ppm): 0.02
Summary data: no

Histogram data: no
Full data yes  

Figure 4: Parametric simulation based on full data 

2.1.3.Restrictions 
In Figure 3, age and days are unrestricted, e.g. all consumers and all days are taken to sample from. 
Note that option Consumers only is set to no, meaning that all consumers are taken to sample from 
irrespective of their actual consumption. When options age or day restrictions are specified, the cell 
content is set to yes and the minimum and maximum age (years) and day-number is filled in (Figure 
5). When option Consumers only is set to yes, in the upper left corner of the spreadsheet the message 
‘Consumers Only’ is shown. 
 

15
16
17
18
19
20
21
22
23
24

A B C D

Food consumption data
Age restrictions: yes
     if yes

   min.age 18
   max.age 100

Seq. day restrictions: yes
     restrict to consumption data
     of day (1, 2, etc.) 1  

Figure 5: Restrictions for age and day 

2. 2.Model 
Under Model, the exposure model is specified.  

2.2.1.Processing factors 
The use of processing factors (see 4.2.2) is indicated by setting the cell contents to yes. Note that no is 
a worst case scenario (fk =  fk,upp = 1). If commodities are processed, processing factors are fixed (fk = 
fk,upp) or random e.g. sampled from a normal distribution with parameters μ and σ for mean and 
standard deviation based on transformed values of fk,upp and fk,nom. The transformation should be 
specified (logarithm or logit). Processing factors are read from the file xxxx_proc.xls and codes and 
labels from proccode.xls (see 5.3.3). In Figure 3, fixed processing factors are specified (yes). To 
process simultaneously some commodities using fixed factors and others using factors based on a 
distribution, set option use fixed processing factors to no, e.g. processing is based on a distribution. 
Now, fixed factors fk are obtained by providing only fk,upp, whereas random factors fk are sampled 
when both fk,upp and fk,nom are given. It is not necessary to fill out in xxxx_proc.xls a complete list of 
processing factors on all commodities. Missing fk,nom and fk,upp are, by default, replaced by the value 1. 
When processing factors are based on a distribution, sampled values are not necessarily < 1. 
Depending on the values of fk,upp and fk,nom, occasionally values above 1 occur. To force fk < 1 a logit 
transformation is specified (see also 5. 3 and Figure 12).  
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2.2.2.Variability factors 
In Figure 3, option variability factors (see 4.2.3) is set to yes. Estimated factors (see 4.2.3.1) are found 
in file xxxx_varf.xls (see 5.3.3). When sample variability is based on default factors (see 4.2.3.2) 
variability factors are according to Table 2 in 4.2.3. 

2.2.3.Number of simulations 
The number of simulations (iterations) specified in Figure 3 is set to 5000. This is the number of 
consumers that is randomly drawn from the consumer data base. There are no upper limitations to this 
number. Note: a Monte Carlo risk assessment incorporating both processing and variability factors 
will increase simulation time considerably. 

2.2.4.Acute risk 
Residue concentration data in the various food commodities are independent and therefore can be 
modelled by univariate distributions. Two approaches are implemented. 
 
2.2.4.1 Non parametric approach 
In the non-parametric approach, option empirical concentration data = yes (see Figure 3), residue 
values are sampled at random from the available data and combined with food consumption data to 
generate the intake distribution of exposure values. Note: when option empirical concentration data is 
specified, all cell information concerning parametric modelling is ignored. 
 
2.2.4.2Parametric approach 
In the parametric approach, option empirical concentration data = no, residue concentrations per food 
commodity are sampled from parametric distributions based on full data, histogram data or summary 
data (see 2.1.2). When parametric modelling is specified, pooling of means and variances is optional 
(see 4.5.2, Figure 14). In Figure 6, parametric modelling and no pooling of means and variances 
within productgroups is specified. Note that specifying option no pooling is only a choice when μ’s 
and σ’s of residue concentration data are present for all commodities. If some parameters are missing, 
a warning message is printed by the program. MCRA should be rerun with option pooling set to yes. 
 

17
18
19
20

E F G H
Acute risk
Empirical concentration data: no
if no, then (parametric modelling)
Pooling of means/variances: no  

Figure 6: Parametric modelling: no pooling of means/variances 

In case of missing μ’s and/or σ’s the simulation is preceded by a pooling step to obtain all necessary 
parameters. In Figure 7, option automatic pooling is specified (yes) and the Monte Carlo risk analysis 
cycles to the end without any interrupts. 
 

17
18
19
20
21
22
23

E F G H
Acute risk
Empirical concentration data: no
if no, then (parametric modelling)
Pooling of means/variances: yes
if yes (parametric), then
automatic pooling of means/variances: yes

 
Figure 7: Parametric modelling: automatic pooling of means/variances 

If option manual pooling is set (Figure 8), the user is guided through the pooling process through the 
use of pop-up menu’s (not for web application).  
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17
18
19
20
21
22
23
24
25
26

E F G H
Acute risk
Empirical concentration data: no
if no, then (parametric modelling)
Pooling of means/variances: yes
if yes (parametric), then
automatic pooling of means/variances: no
      (no = manual pooling)
Manual pooling of heterogene means
within homogene groups no
           (no  = no pooling)  

Figure 8: Parametric modelling: manual pooling of means/variances and no manual pooling of 
heterogene means within homogene groups 

2.2.5.Chronic risk 
In Figure 3, option long term exposure according to Nusser (see 4. 4) is set to yes. Two 
transformations may be specified, a power or a log transformation. Usually, a power transformation is 
satisfactory. In addition, the cumulative risk for a certain age (in years) is specified. Chronic and acute 
risk assessment may be performed simultaneously, that is in the same run. Both results are reported. 
However, a chronic risk assessment is only possible when the total number of non-detects is below 
1%. When the number of non-detects is higher, a warning message is printed. Note that a chronic risk 
assessment is time-consuming. When options Consumers only and replace all non-detects are both 
specified, a chronic risk assessment is always completed succesfully. Specifying option replace all 
non-detects only, is in most cases not sufficient to run succesfully a chronic risk assessment. 

2. 3.Pseudo-random sampling 
The Monte Carlo simulation uses a pseudo-random number generator that is initialised by setting the 
seed. To get time-based values, set seed to zero and the generated sequence of random numbers is 
based on a default value which is printed in the program output. Using this value in a second run will 
result in identical simulation results provided that the model or number of iterations are not changed. 

2. 4.Output 
Requested output is specified in the Output form. In Figure 3, all output is set to yes. To print a 
summary of the upper quantile, the upper value may be specified. The default value is 95%. Two 
kinds of graphs are available: the upper tail of the intake distribution for a specified quantile and the 
total intake distribution of all positive values. Note that the value of the upper quantile of the 
summary and upper tail of the intake distribution are set independently. All output is written to files 
tabx.lis with 1, 2, 3, 4a, 4b, 5, 6 and 7 replacing x.  
For chronic risk assessment, a diagnostic graph is plotted and output is written to file nusser.lis.  
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3. MCRA internet application 
The MCRA internet application is basically the same as the stand-alone version and the diagram 
presented in Figure 2 applies. The major differences occur in block 4 where calls to subroutines are 
made in order to encrypt generated output to allow communication with ActiveX–aware browsers.  
In Figure 10, a diagram of the internet version in its environment and related files is presented. The 
MCRA homepage is found at mcra.html. This HTML-page calls startsession.asp and input.htm to start 
an MCRA-session. By entering the on-line input form (see Figure 9), the website is locked to other 
users and the Monte Carlo model is specified. After filling out the form, all settings are passed to the 
server by pressing the submit button. Repeatedly pressing the submit-button during processing 
generates a warning. The servers starts MCRA, performs a risk assessment and after completing the 
analysis returns an output window (reference.htm and outputprint.htm, see Figure 11). Charts and 
tables are viewed on the web-page and the client is allowed to manipulate the charts using the mouse 
buttons. 

Each session should be ended by pressing the -icon. This unlocks the website to other 
users. When the website is currently in use (session locked) and a second user tries to enter it, a 
warning message is generated. A session is unlocked calling restartsession.asp. A call to quick.asp 
surpasses the analysis and output that is generated in an earlier session (see Figure 11) is viewed 
immediately 
 

 
Figure 9: MCRA internet application: on-line input form  

 



 12 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: MCRA internet application: environment and files 

input.htm 
 

mcra06022002.gen 
path 
url totaldistr.htm 

upperdistr.htm 

tab1.lis 
tab2.lis 
tab3.lis 
tab4a.lis 
tab4b.lis 
tab5.lis 
tab6.lis 
tab7.lis 
totaldistr.dat 
upperdistr.dat 
etc… 

etc… 

mcra.html 
 

startsession.asp 

program.asp 

reference.htm 
 

endsession.asp 

output.asp 

outputprint.htm 
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Figure 11:MCRA internet application: piechart of contributions to upper tail of intake 
distribution 

 
When new data become available files are copied to the directory on the server. New residue codes 
are added with HTML-code <option>####</option> in file input.htm. To run a new version of 
MCRA, change the version number in program.asp. 
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4. Model description 

4. 1.Introduction 
This chapter describes a stochastic (or Monte Carlo) model for the assessment of acute risks due to the 
intake of pesticides from food. The model combines food consumption survey data and pesticide 
concentration data from monitoring programs. The model allows for effects of food processing 
between monitoring and ingestion, it can model unit variability either from available data or using 
default assumptions, and it uses information on limit of reporting and percent crop treated to check 
whether non-detects present a source of uncertainty.  
The basic model is: 

 

i

p

k
ijkijk

ij w

cx
y

∑
== 1  

 
where yij is the intake by individual i on day j (in μg pesticide per kg body weight), xijk is the 
consumption by individual i on day j of food commodity k (in g), cijk is the concentration of the 
pesticide in commodity k eaten by individual i on day j (in mg/kg, ‘ppm’), and wi is the body weight 
of individual i (in kg). Finally, p is the number of food commodities accounted for in the model. Note 
that the definition of ‘commodity’ should be flexible: it may represent a raw agricultural commodity 
(RAC), e.g. ‘apple’, but the user of the model should have the option to discern processing-related 
subdivisions, e.g. ‘apple, peeled’ or ‘apple, juiced’. 
 
In the stochastic model the quantities xijk, wi and cijk are assumed to arise from probability distributions 
for individual food consumption and weight, p(x1 ,...,xp,w), and for pesticide concentrations in each 
food commodity, pk(c). In principle these probability distributions may be parametric (e.g. completely 
defined by the specification of some parameter values) or empirical (e.g. only implicitly and roughly 
defined by the availability of a representative sample).  
 
We restrict our attention to the basic model of the empirical distribution of food consumption and 
body weight as is provided by the national food consumption surveys. A recipe data base has been 
used to convert the amounts of food as consumed to amounts of commodities (x1 ,...,xp) of raw 
agricultural products which are used in the model. For example, from the Dutch Food Consumption 
Survey 1997 food consumption patterns (x1 ,...,xp), body weight (w) and age (a) are available for 6250 
individual persons on 2 consecutive days. Depending on the problem, Monte Carlo samples may be 
drawn from the complete data base, from a day or age-restricted subset or from consumers only. 
 
Residue concentration data are available from the KAP-data base (Oracle), which stores annually 
more than 200.000 records of measurements originating from food monitoring programs for meat, 
fish, dairy products, vegetables and fruit. 
 
Given these probability distributions (or estimates thereof) Monte Carlo simulations can be used to 
generate an estimate of the probability distribution p(yij) to assess acute risks by intake of the pesticide 
(see 4. 2). When dietary components are consumed on a nearly daily basis, intake values yij may be 
used to estimate the probability distribution p(yi.) for chronic risk assessment purposes (see 4. 4). 
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4. 2.Modelling of pesticide concentrations in consumed food 

4.2.1.Distributional assumptions 
Residue concentrations in the various food commodities are independent and therefore can be 
modelled by univariate distributions. 
 
4.2.1.1Non-parametric modelling of residue levels 
In the non-parametric approach, residue values are sampled at random from the available data and 
combined with the consumption data to generate a new distribution of exposure values. To assess the 
risk-exposure, percentiles of the exposure distribution are estimated. 
 
4.2.1.2Parametric modelling of residue levels 
In the parametric approach, residue concentrations per food commodity are sampled from parametric 
distributions. A special feature of residue data is that the large majority of measured concentrations 
(often more than 80%) is recorded as zero (non-detects). These values may correspond to true zero 
concentrations (for example because the substance is never used in the specific product), or they may 
correspond to low concentrations which are below a pre-established reporting limit (LOR). In any 
case, the residue concentration distribution is very skew, with a large spike at zero and an extended 
tail to higher values. For statistical modelling a two-step procedure is chosen. First, the presence of a 
concentration ≥LOR on food products is modelled with a binomial distribution with a parameter p 
representing the probability of a reported residue level. Probability p depends on the pesticide and the 
product and is estimated as the fraction of detects. Secondly, the non-zero residues are modelled with 
a parametric distribution. After consideration of several possibilities using the program BestFit, the 
lognormal distribution has been selected as being both theoretically sensible and practically useful. 
The parameters μ and  are the mean and standard deviation of the log-transformed non-zero residue 
concentrations. 
In the basic model (see 4. 1) 
 

 ijkijkijk cposIc ⋅=  
 
with ijkI  indicating whether a residue concentration is sampled ( ijkI =1) or not ( ijkI =0), and cposijk the 

residue concentration in the subpopulation of positive values. The probability of ijkI  being 1 or 0 

depends on the number of detects found for commodity k and ijkI  is sampled separately for each 
individual i on occasion j.  

4.2.2.Modelling of processing effects 
Concentrations in the consumed food may be different from concentrations in the product as 
measured in monitoring programs (typically raw product) due to processing, such as peeling, washing, 
cooking etc. 
In general we assume the model: 
 
 ijkkijk crfcpos ⋅=  
 
where crijk is the concentration in the raw product, and where fk  is a factor for a specific combination 
k of RAC and processing. Values will typically be between 0 and 1, although occasionally the 
processing factor may also be >1.  
The user of the model will have to specify processing factors for each commodity k as defined in the 
food consumption data base. For this purpose it is advised to maintain a data base of processing 
factors, indexed by pesticide, RAC and processing type (e.g. washing, peeling, other processing). 
Before running the model it may then be necessary to specify how the necessary processing factors 
are derived from the data base entries and/or other information. Example: if there are no processing 
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factors known for captan in pears, it may be decided to use the corresponding factors for apples 
instead. 
Often the information will be of limited quality, and this may be entered in the Monte Carlo 
modelling by specification of uncertainties. A practical proposal is to specify for each processing 
factor two values: 
1. fk,nom: the nominal value, typically some sort of mean from an experimental study 
2. fk,upp: an upper 95% confidence limit, which typically will be set by an expert (even if statistical 

information on variability of the factor is available, there will often be uncertainty due to the 
appropriateness of the processing study for the population of the risk analysis). The upper limit 
should be such that experts will easily agree that it is not set too low. 

A typical data base entry might thus read: 
pesticide RAC processing fk,nom fk,upp  
captan  apple washing 0.5 0.7 

and, confronted with the need to have processing factors for pears in a specific risk analysis, an expert 
may decide upon: 

pesticide RAC processing fk,nom fk,upp  
captan  pear washing 0.5 0.8 

 
In the Monte Carlo modelling, processing factors can be used in either of three ways (for each 
commodity k to be chosen by the user): 
1. (no processing factor) Just take fk = 1. This is in most (though not all) cases a worst-case 

assumption. No data on processing are needed and therefore this route is useful in a first tier 
approach. 

2. (fixed value) Use fk = fk,upp. Available information on specific processing effects is used, although 
still in a cautionary way (in accordance with the precautionary principle). Note that  fk,nom values 
need not to be specified. 

3. (distribution based) Sample fk using a normal distribution. Log or logit transformed values of fk,nom 
and fk,upp are used to define the first two moments of the normal distribution. Two situations are 
distinguished depending on the type of transformation.  
a) The logarithms of fk,nom and fk,upp are equated to the mean and the 95% one-sided upper 

confidence limit of a normal distribution. This normal distribution thus is specified by a mean 
ln(fk,nom) and a standard deviation {ln(fk,upp) – ln(fk,nom)}/1.645. Values are drawn from this 
distribution in the Monte Carlo simulations. Processing factors fk will be nonnegative. Note: 
fk,upp and fk,nom values equal to 0 are replaced by a low user-specified value (e.g. 0.01); this is 
useful computationally to avoid problems with logarithms.  

b) The logits of fk,nom and fk,upp are equated to the mean and the 95% one-sided upper confidence 
limit of a normal distribution. This normal distribution thus is specified by a mean logit(fk,nom) 
and a standard deviation {logit(fk,upp) – logit(fk,nom)}/1.645. Values are drawn from this 
distribution in the Monte Carlo simulations. Processing factors fk will be between 0 and 1. 
Note: fk,upp and fk,nom values equal to 0 and 1 are replaced by user-specified values (e.g. 0.01 
and 0.99); this is useful computationally to avoid problems with logits. 

The user should keep in mind that, in case of a lognormal distribution, fk,nom defines the median, 
while fk,upp quantifies skewness. The same holds for the logistic. Usually, a logarithm will be the 
standard transformation, but for very skew distributions (see Figure 12) occasionally values above 
1 are sampled (upper row, 1rst, 3rd and 5th plot). A logit transformation should be considered. 
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Figure 12: Lognormal (upper row) and logistic (lower row) distributions for various values of 
fk,nom (=nom) and fk,upp (=upp) 

4.2.3.Modelling of sample variability 
Monitoring measurements cmk are typically made on homogenised composite samples. Such a 
composite sample is composed of nuk units with nominal unit weight wuk each. The weight of a 
composite sample is therefore wmk = nuk × wuk . This weight is often larger than a consumer portion, 
e.g. a typical composite sample of 20 sweet peppers weighs 3.2 kg, whereas daily consumer portion 
weights in the Dutch Food Consumption Survey 1997 ranged from 0.08 g to 458 g.  
 
How should monitoring data be used to estimate the raw commodity concentration levels crijk in 
probabilistic acute risk assessment? Although the mean level of cmk may be a fair estimate of the 
mean level of crijk, the variability of cmk is not appropriate to estimate the variability of crijk. In 
smaller portions more extreme values may occur more readily, and thus acute risks may be higher 
than would follow from a direct use of the composite sample data. 
 
In non-probabilistic modelling of acute risks the unit-to-unit variability has been addressed by the 
definition of a variability factor v, which is the ratio between a ‘high’ value (maximum or high 
percentile, not clearly defined) and the mean (or median) value of residue levels of individual units in 
a batch of units. Values for v can be obtained by measuring individual units. In practice such data are 
mostly available from field trials, although for risk assessment it would be more appropriate to 
calculate unit variability in monitoring samples. We therefore advise to use field trial values for v only 
when monitoring sample values for v are not available.  
If there are insufficient data from measurements on individual units, the FAO/WHO Expert 
Consultation (FAO/WHO, 1997; Crossley, 2000) recommended to assume (conservatively) that all of 
the residue in a composite sample would be present in one of the units. Under this assumption v 
equals the number of units in the composite sample. If Codex sampling protocols are used, then the 
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number of units per composite sample is 5 for large crops (unit weights > 250 g) and 10 for medium 
crops (unit weights 25-250 g). For small crops (< 25 g) a variability factor v = 1 was recommended. 
More recently, it has been proposed to replace the default value 10 with 7. For commodities which are 
processed in large batches, e.g. juicing, a variability factor v = 1 is proposed. To summarise: 
 
unit weight, wu variability factor, v 
< 25 g 
25 -250 g 
> 250 g 
juicing, marmalade/jam, sauce/puree 

1 
7 
5 
1 

Table 2: Default variability factors 

The lognormal distribution is considered as an appropriate model for many empirical positive residue 
level distributions. We will also assume a lognormal distribution for unit residue concentrations. Let 
this distribution be characterised by μ and σ , which are the mean and standard deviation of the log-
transformed concentrations lc. The variability factor v can be converted into the standard deviation σ  
(see below). Upper-tail percentiles of this lognormal distribution are influenced in two opposing ways 
by the magnitude of the variability factor: 

1. Because of  more spread, the percentiles σμ qz
q ec +=  increase with σ  relative to the median eμ   

(zq is the 100q percent point of the standard normal distribution); 
2. However, the median eμ  decreases with σ  relative to the expected value (mean) E(c) according  

to: ( )
2

2
1σμ −⋅= ecEe . 

The composite sample measurements cmk are estimates of E(c). Percentiles of the unit distribution for 
a batch with expected value (mean) cmk are therefore equal to: 
 

 σσ qz
kq ecmc +−⋅=

2
2
1

 
 
The combined influence in this simple case is that cq increases with σ for high percentiles (zq > σ), but 
decreases with σ for relatively low percentiles (zq < σ). 
 
The following approaches to the modelling of sample variability should be incorporated in the model: 
1. Use estimated values of v 
2. Use default (conservative) values of v 
 
These approaches are described in more detail below. In both cases we assume that the majority of 
residue level data is from a representative sample of composite samples. Alternatively, surveys may 
be available in which residue level data have been collected for large amounts of individual units. 
These data can be used directly, although care is needed to reflect the structure of between-
batch/within-batch variability (Hamey, 2000).  
 
4.2.3.1Use estimated values of the variability factor v 
In this approach it is essential to discern between-batch variability from within-batch variability. 
Typically, variability factors are calculated for units from one field trial or commercial batch, 
although such batches are not always clearly defined. Variability factors describe the variability 
between units within batches. The proposed approach is as follows: 
• If a value for v is available that can be interpreted as the ratio between the 97.5 percentile and the 

median of a lognormal distribution of unit residue levels in one batch, then, with μ and σ 
representing the mean and standard deviation of the log-transformed concentrations lc , we have: 

 

σ
μ

σμ
2

2

e
e

ev ==
+
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or ( )vln2

1=σ  
 

• For each iteration i in the Monte Carlo simulation, obtain for each commodity k a simulated 
intake xik , and a simulated composite sample residue concentration cmik . 

• Calculate the number of unit intakes nuxik in xik (round upwards) and set weights wikl equal to wuk, 
except for the last partial intake, which has weight ( ) kikikikl wunuxxw 1−−= . 

• Draw nuxik simulated log-concentration values lcikl from a normal distribution with mean 
( ) 2

2
1ln σμ −= ikcm , and standard deviation σ. 

• Backtransform and sum to obtain the simulated concentration in the consumed portion: 
 

ik

nux

l

lc
iklik xewcr

ik
ikl∑

=

=
1

 

 
Note: Variability between units is often quantified with the coefficient of variation (CV) rather than 
the variability factor v. With v defined as the ratio between 97.5 percentile and median, the relation 
between these two characteristics in a lognormal distribution is: 1−= vCV , or 21 CVv += . 
 
4.2.3.2 Use default (conservative) values of the variability factor v 
In the absence of reliable data it may be appropriate to use a default value for v (e.g. v = 5 or 7). This 
approach is almost equal to the previous one. However, in order to stay on the safe side, the variability 
factor is only invoked to obtain a larger spread of unit concentrations, but not to lower the estimate of 
the median value μ. This can be interpreted as assuming that composite samples have been obtained 
from very homogeneous sets of units (with effectively v = 1), although this homogeneity will not be 
assumed for consumer portions.  
Consequently, in this approach the unit log-concentrations are drawn from a normal distribution with 
mean ( )ikcmln=μ , and is otherwise the same as described above. 

4.2.4.Modelling of non-detect levels 
Most monitoring measurements of pesticides are non-detects, i.e. no quantitative measurement is 
reported. The status of the limit of reporting (LOR) used by the laboratory is often not clear. In the 
food risk world the limit is commonly indicated as LOD (limit of detection) or LOQ (limit of 
quantification). Unfortunately, only values higher than LOD or LOQ are reported, in spite of official 
recommendations to always report the numerical values below LOD or LOQ limits if available 
(IUPAC 1995). When a pesticide can enter the food chain only via crop treatment, and when the 
percentage of crop treated is (approximately) known to be 100pcrop-treated , then this knowledge may be 
used to infer that 100(1-pcrop-treated)% of the monitoring measurements should be real zeroes, 
contributing nothing to pesticide intake, whereas other non-detects in the monitoring data could have 
any value below the limit of reporting. For 100(pnon-detect + pcrop-treated - 100)% of the monitoring 
measurements, 0 and LOR represent best-case and worst-case estimates. A simple way (tier 1 
approach) to consider the uncertainty associated with non-detects is to compare intake distributions 
for these best-case and worst-case situations.  

4. 3.Specification of model inputs and uncertainty analysis 
We distinguish between choices on the model and model inputs. 
1. Choices with respect to the model and problem situations. 

Once made, these choices are considered as fixed: they add no uncertainty to model outcomes. 
The following choices are relevant: 
a. consumer population: total or restricted to a subset of certain ages 
b. days: all or restricted to a specific subset of days 
c. type of risk calculation: acute (daily intakes) or chronic (usual intakes) 
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d. type of model for residue data: empirical (non-parametric) or parametric 
e. for parametric models: pooling of parameters over products yes or no 
f. approach to incorporate unit variability 

2. Model inputs: these represent the numeric data that enter the model. In general they will have an 
associated uncertainty, and in order to allow future extensions of the model to evaluate the 
uncertainty of the model outcomes it is necessary, that something is known about these 
uncertainties. 

 
Model inputs are: 
1. Food consumption data base considered as a representative sample from the relevant population; 

uncertainty is implicit in the sample, and can be evaluated with resampling procedures (e.g. 
bootstrap) 

2. Pesticide monitoring data base; in the case of empirical modelling resampling procedures can be 
used to assess the uncertainty; in the case of parametric modelling the uncertainty can be 
expressed as standard errors of the parameters. 

3. Percentage agricultural use of pesticide (% crop treated)  
4. Non-detects; in a simple first approach the maximal uncertainty from non-detects is estimated 

from a comparison of simulations with substitution of 0 and LOR for the non-detect 
measurements. 

5. Variability factors and unit weights (approach 1 or 2)  
6. Processing factors to describe the net effect of processing practice on pesticide intake; 
Model inputs 3, 5 and 6 can be specified in general (i.e. applicable for all products), or specific values 
for products can be given.  
 
For inputs 3-6 one should specify either conservative values, or nominal values in connection with 
information on the uncertainty in these values. In order to make this as practical as possible this 
information is requested in the form of a limit (either upper or lower), which should be considered 
conceptually as a one-sided 97.5 % confidence limit. The program will translate the nominal and limit 
values into a normal uncertainty distribution on an appropriate scale (logistic for factors restricted to 
the interval [0,1], lognormal for non-negative inputs such as sample weight.  

4. 4.Chronic risk assessment 

4.4.1.Introduction 
In dietary risk assessment, usual intake is defined as the long-run average of daily intakes of a dietary 
component by an individual. From a statistical point of view, assessing the usual intake can be 
reduced to the problem of estimating the distribution of a random variable yi that is measured with 
error. A model for the relationship between the observations yij and the true random variable of 
interest yi is: 
 
 yij = yi + uij 
 
where uij is an additive measurement error for individual i on day j. For independent, normally 
distributed yi and uij, estimation of the distribution of yi is straightforward. When observations yij are 
non-normal and the measurement error variance is heterogeneous across sampling units, estimation is 
less simple. Nusser et al. (1996) describe a procedure for estimating the percentiles of the distribution 
of long-run average daily intakes using non-normal dietary intake data. Principally, their method 
consists of three steps: 
1. transforming the daily intake data to approximate normality using a combination of a power 

function and a grafted polynomial function. The polynomial provides some flexibility against 
power transformed components that are still deviating from normality, 

2. estimating the parameters of the usual intake distribution in the transformed scale, and 
3. estimating the percentiles of the distribution of usual intakes in the original scale. 
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The basic ideas of Nusser et al. are suited for dietary components that are consumed on a nearly daily 
basis, e.g. dioxin in fish, meat or diary products.  

4.4.2.Modelling long term daily intake  
Usually, food consumption data are available for individuals on 2 (or more) consecutive days. Monte 
Carlo samples are drawn from the data base to generate an estimate of the probability distribution of 
the intake of residues. For this situation, the model for the usual intake distribution is: 
 

yijk = yi + uij + eijk 
 
with yijk the observed intake of individual i on day j and residue k, yi is the unobservable usual intake 
value for individual i, uij is the unobservable measurement error for individual i on day j, and eijk, the 
unobservable error for individual i on day j for residue k. In the normal scale, yi  ~ N(μ, σ2

cons), uij ~ 
N(0, σ2

day) and eijk ~ N(0,σ2
0).  

 

4.4.2.1Step 1: power transformation and splinefunction  
The observations yijk are transformed close to normality using a power transformation. As indicated by 
Tukey (1962), the expected value of a normal score z = (y-μ)/σ can be approximated by the U-score: 
 
 )]4/1/()8/3[(1 +−Φ= − NrU lijk  
 
where rl is the rank of the ijkth observation yijk and N, the total number of observations. The power γ is 
estimated by minimising the error sum of squares: 
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over a grid of values of γ, where U(ijk) and y(ijk)  denote the order statistics of Uijk and yijk.  
The observations are replaced by power transformed observations: 
 
 γ

ijkijk yz =  
 
After a power transformation, some components still deviate from normality. To minimise deviations 
in the Y-direction an integrated B-spline is fitted to the ( ijkijk zU , ) pairs. The spline function is 
enforced to be monotone increasing by constraining the parameters to be nonnegative. The knots of 
the spline function are placed such that the interval lengths between knots are equal with two data 
points left to the left knot and two right to the right knot. The number of knots is optional, here K = 7 
is taken. In the intervals, a cubic spline of order 3 is fitted, outside the joint left and right knot the 
spline is linear. Observations that are transformed by a power in combination with a spline function 
are denoted by zspline,ijk. These values are approximate normally distributed. 
 
4.4.2.2Step 2: estimation of parameters of the usual intake distribution 
The power transformed daily intakes are transformed having zero mean and unit variance: 
 

z*
spline,ijk = (zspline,ijk – μ̂ spline)/σ̂ spline 

 
Parameters of the standardised usual intake distribution in the normal scale are estimated assuming 
the following model: 
 
 z*

spline,ijk = zspline, i + uij + eijk 
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with variance components σ2
cons estimating the variability between consumers, σ2

day, estimating the 
day to day variability within consumers and σ2

0, estimating the variability between residues within a 
sampling day within consumers. The variance components are estimated using standard statistical 
methods (Restricted Maximum Likelihood). Their sum is close to 1 because the transformed data 
(indicated by the asterisk) have mean 0 and variance 1. Normal equivalent deviates of the usual intake 
distribution (mean 0 and variance σ2

cons) are calculated using: 
 
 )100/(ˆ 1 pq betweenusual

−Φ= σ  
 
with p a percentage and consbetween σσ ˆˆ = . 
 
4.4.2.3Step 3: backtransformation and estimation of usual intake 
Percentiles in the original scale are estimated by a linear interpolation using the ( *

,, ijksplineijk zU ) pairs: 
qusual specifies the values for which interpolated z*-values are required. The interpolated standardised 
values, say z*

usual, spline, are transformed to the original scale by the inverse of the power and correcting 
for the variance and the mean of the original variable: 
  
 zusual, spline = (z*

usual, spline* σ̂ spline + μ̂ spline)1/γ  

4. 5.How to deal with limited information 
In the probabilistic model, a distribution of food consumption data as well as a distribution of residue 
data are used. For both components of the model, a choice can be made between a parametric (see 
4.2.1.2) or a non-parametric (see 4.2.1.1) approach. In a parametric approach the data are modelled 
with an appropriate distributional form (e.g. lognormal with parameters σ and μ). In a non-parametric 
approach the empirical distribution is used to sample from directly. Obviously, the latter approach 
requires more data to obtain a satisfying representation of the full distribution. Therefore, parametric 
modelling becomes important in data-scarce situations.  

4.5.1.The choice between a parametric and non-parametric approach 
How many residue data are required for a sensible calculation of upper-tail percentiles in the exposure 
distribution based on a non-parametric approach? The rule of thumb can be used that the chosen 
percentile should be contained directly in the data. For example, at least 20 measurements are needed 
to estimate the 95th percentile and at least 100 measurements to estimate the 99th percentile. More 
generally, the number of measurements per food commodity (n) should at least equal 1/(1-p%/100) to 
allow a rough empirical estimate of the pth percentile of the residue concentration distribution to be 
made. Of course, the risk assessment is only coarse with this minimum amount of data and larger 
sample sizes per food commodity are certainly worthwhile.  
In situations where the number of measurements becomes a problem, an appropriate risk analysis 
should be based on further modelling. Essentially, the lack of data is compensated by a priori 
assumptions. Assuming a simple distributional form for the residue data, the number of measurements 
can be smaller in principle (at least 10, say). However, non-detect measurements provide no 
information about variability, and therefore we should now count the number of positive 
measurements. Figure 13 shows which approach could be best used depending on the total number of 
measurements and the number of non-zero measurements. In principle, such a choice could be made 
separately for each food commodity.  
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Figure 13: Use of non-parametric or parametric modelling for estimating 99 % exposure 
percentile in relation to sample size and number of positive measurements. 

4.5.2.Grouping of products 
When data are limited, the parametric approach has some potential. The distributional form for the 
residue data is modelled with the lognormal with parameters σ and μ. However, estimation of the 
sample variance and/or mean are often hampered because data on residues in specific food 
commodities are sparse or even missing. In those cases, grouping of products into productgroups 
enlarges the number of measurements per group and may give sufficient data to base estimates upon. 
We must assume that residue distributions are the same for the grouped products. A second related 
question is the reliability of estimates, based on a few number of degrees of freedom. The following 
procedure is designed to cope with the above problems.  
1. Step 1 (see Figure 14). For each product the variance σ2 and mean μ is estimated. Then, products 

are assigned to productgroups which are composed of related products, e.g. productgroups 
consisted of cabbages or all kind of berries. The homogeneity of variances in different 
productgroups can be assessed using Bartlett's test (Snedecor & Cochran, 1980). The test statistic 
determines whether variances are to be pooled automatically (p > 0.05) or not (p  0.05). In the 
latter case, products are assigned to subgroups (within productgroups) manually and the 
homogeneity of variances is tested again. For homogeneous groups, variances are pooled within 
productgroups. This process of assigning products to subgroups is repeated until all groups have 
homogeneous variances. After pooling the variances, an overall test for differences of means is 
performed, based on analysis of variance. Means are pooled automatically if the probability p > 
0.05. If not, manual pooling is performed. In Figure 14, steps on the right side require a manual 
assignment of products into productgroups before variances are pooled. This manual step may be 
considered optional. This means that when it is decided not to do so, all original variances and 
means are maintained. 

2. Estimates of variances based on less than 10 df are considered not very reliable. Therefore, in step 
2 of Figure 14, variances based on < 10 df are compared to the overall variance (pooled over all 
products except the tested product itself, i.c. corrected) and tested for equality. Variances are 
replaced by the overall variance (uncorrected) whenever the hypothesis of equality of variances is 
not rejected; if rejected, the original variances are maintained. If the variance is replaced for 
(sub)groups with two or more members, a test for differences of means is performed. Means are 
pooled automatically if p > 0.05, if not, the original means are maintained. 
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3. After carrying out step 1 and 2, there may still remain products with less than 10 df. These 
products are considered again. The variances are judged visually and assigned by hand to one or 
more of the products with approximately the same value for the (pooled) variance, After testing 
the variances, the variances are pooled again, replacing the variance based on < 10 df with the 
pooled one. Testing for differences of means is performed and for those cases where p > 0.05, 
means are also pooled.  

4. Finally, those cases where variances are pooled but means not, are considered again. The products 
may be rearranged into (sub)productgroups based on similarity of their means. Then, pooled 
means are calculated replacing the original ones. This last pooling step is optional and not 
indicated in the figure. 

Once decided on performing a parametric risk assessment, rearrangement of products into (sub)groups 
to estimate the necessary parameters is almost inevitable. Therefore, it is not possible to compare 
results of a non-parametric risk assessment with a parametric one as such, because nearly always 
some form of pooling has preceded estimation. 
 
Step 1: 
• Calculate variances and means for each product 
• Classify products into groups 
• Test homogeneity of variances and equality of means within groups of products. Results are: not 

significant (p > 0.05) or significant (p ≤ 0.05). 
 

• test homogeneity of
variances

automatic pooling
• test equality of means

automatic pooling

manual pooling
• test equality of means

manual
pooling

p ≤ 0.05

 p ≤ 0.05
automatic
pooling

p > 0.05 p ≤ 0.05

p > 0.05

p > 0.05

 
Step 2: 
• Take products(-groups) with df < 10 
• Compare variance with overall variance (corrected). Replace variance with overall variance 

(uncorrected) for non-significant test results. 
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Figure 14: Step 1 and 2, schematic outline of grouping of products into (sub)productgroups 
when the number of available data on residue levels is limited. 

4.5.3. Estimation based on summary data or histogram data 
In EU reporting, residue data are sometimes reported in a tabulated (histogram) form. For histogram 
data, the parameters of the lognormal distribution can then be obtained by fitting normal distributions 
to a set of observations or counts. Statistics are n1…nk, the number of counts in k classes. The group 
limits are logtransformed and a normal distribution is fitted to standardised normal probabilities based 
on group limits and the numbers n1…nk. Parameters μ and σ  are estimated. Group limits ck are given 
with c1  = LOR.  
Occasionally, data are reported in a very condensed form. Summary statistics are used to describe 
characteristics of the underlying residue distributions. These statistics may be used to base estimates 
of μ and σ upon. De Boer and Van der Voet (2000) describe a procedure to deal with data-scarce 
situations that seems to work rather satisfying. 
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5. Appendix 

5. 1.Procedures in the MCRA program 
PRODLABREAD: reads commodity-labels and levels (PNRLEV). Reads indicator value if residue is 
allowed or not on a commodity from file xxxx_pro.lis. Prints number of commodities (NPNR). 
CMPLABREAD: reads residue-label (compound) from file xxxx_cmp.lis. Prints residue code and 
label. 
INDIVIDUALSREAD: reads consumer characteristics (PERSNR, PLEEF, PGEWI) from file 
individuals.lis. Calculates the total number of consumers contained in the data base (PERSTAL) and 
the minimum and maximum age (MINLEEF, MAXLEEF). 
CONSUDATREAD: reads consumption data and processing codes from file xxxx_con.lis and stores 
data in backingstorefile xxxx_con.bac. The procedure checks if a backingstorefile is present. If 
present, data are directly read from this binary file which speeds up runtime considerably. Note that 
existing backingstorefiles should be removed or deleted when new data become available. In general, 
older consumer codes (RESP) do not match the newer ones in the consumption data file. Forms*2 a 
subset containing consumers only and prints a warning message. 
HDATREAD: loads histogram data on residues from xxxx_histo.xls. Calculates parameters μ and σ 
of the lognormal distribution. [option summary data = yes]3. 
SDATREAD: loads residue summary data from xxxx_sum.dat. Calculates parameters μ and σ of the 
lognormal distribution. [option histogram data = yes]. 
FDATREAD: reads residue concentration data from file xxxx_res.lis and the total number of samples 
taken on each commodity from file xxxx_nos.lis. Calculates mean residues, fraction of positive values 
(detects) and number of zero residues (non-detects). Restricts the total set to a subset of commodities 
on which residue concentration data are available. [option empirical concentration data or full data = 
yes] 
LOGNPARA: calculates parameters μ and σ of the lognormal distribution for the full data approach. 
[option empirical concentration data = no]. 
VFREAD: loads variability factors and unit weights from file xxxx_varf.xls. Replaces missing unit 
weights by value 9999. [option use variability factors = yes]. 
NPNRPRO: calculates new number of commodities or number of commodities/processing type 
combinations. 
PRESENT: generates a variate (PRES) indicating which commodities are present and sets a scalar 
(SUBSET). 
%PRESENT: forms a subset according to the value of scalar SUBSET.   
PFLABREAD: loads processing codes and labels from proccode.xls and makes new labels which are 
combinations of commodity and type of processing. Checks if codes for consumed processed 
commodities (xxxx_con.lis) are present in proccode.xls. If not, a warning message is printed. 
Calculates the total number of commodities and processing type combinations (NPNR) and replaces 
the old value of NPNR (total number of commodities) by the new value. Forms* new variates for unit 
weights and variability factors by expanding the old structures according to the number of times each 
commodity is processed. Replaces* unit weights and variability factors of processing types 9, 11 and 
13 by default values 9999 and 1, respectively. Contains %PRESENT. [option use processing factors = 
yes]. 
DAY%CONSUDATREAD: calculates consumption data matrix for (un)processed commodities. 
Checks if all labels for consumed commodities are present and prints a warning if unknown 
commodities are present. Checks the number of days, levels of day and restricts days according to the 
specified day (to the first day if restricted day does not exist). Prints a warning message if 
consumptions on just one day are available. Applies* age restrictions and performs pre-processing for 
a printed summary of the data. [option day restrictions = yes]. 

                                                      
2 * optional, see Figure 3: MCRA stand-alone version: input form MCRA-input.xls. 
3 For procedures that are optional the relevant option is mentioned within brackets [####]. 
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%CONSUDATREAD: calculates consumption data matrix for unprocessed or processed 
commodities. Checks if all labels for consumed commodities are present and prints a warning if 
unknown commodities are present. Creates variate with respondent and daynumbers for option 
Consumers only. Note that the consumption data matrix contains all available days. Applies* age 
restrictions and performs pre-processing for a printed summary of the data. [option day restrictions = 
no]. 
NVHOMOGE: new version of VHOMOGENEITY. Tests homogeneity of variance. [option 
empirical concentration data = no]. 
NMHOMOGE: tests homogeneity of means and performs automatically pooling for p >0.05. [option 
empirical concentration data = no]. 
POOLING: pools variances and means manually or automatically*. Pooling is performed in a three 
step procedure following the next scheme: 
1. Test homogeneity of variances within productgroups 

if variances are homogeneous, 
pool variances and  

test homogeneity of means within productgroups 
 if means are homogeneous, 

pool means. 
2. Test homogeneity of variances of commodities with df < 10 against overall-variance  

if variances are homogeneous, 
replace variances with overall-variance and 

test homogeneity of means within groups 
 if means are homogeneous, 

pool means. 
All groups with a significant test result (p < 0.05) are heterogene and the user has the choice to assign 
manually* commodities to a new subgroup. Means and variances in a subgroup are tested again and 
the process of pooling, assigning and testing is repeated unless it is decided otherwise.  
Results of step 1 and 2 are (sub)groups with: 
a) pooled variances and pooled means,  
b) pooled variances and the original (unpooled, heterogene) means,  
c) the original (unpooled, heterogene) variances and original means. 
3. Manual pooling of means within groups with homogene (pooled) variances (result b) 
Means are assigned to subgroups. This step is not followed by a test of homogeneity. 
 
The next pop-up menu’s are used to guide the user through the pooling procedure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

'Option MANUAL pooling is chosen' 
'Create subgroups (file= xxxx_var.xls) or choose automatic pooling' 

‘Variances and means are pooled manually’ 
‘Variances are heterogene, Ignore heterogeneity?’ 
       ‘Yes (= pooling)’ 

‘No (= stop program)’ 
‘Cancel (= no manual pooling)’ 

'Option MANUAL pooling is chosen' 
'Create subgroups (file= xxxx_var.xls) or ignore heterogeneity’  
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[option empirical concentration data = no]. 
TABPOOLING: prints a summary of the data after the pooling procedure (number of detects, non-
detects, fraction of detects, pooled parameters μ and σ of the lognormal distribution, the original 
parameters on logscale before pooling, number of degrees of freedom of sigma after pooling, 
productgroups e.g. groups of commodities arranged on common characteristics in combination with 
allowance of the use of a residue on a commodity). [option empirical concentration data = no]. 
NOPOOLING: prints a summary of the data (number of detects, non-detects, fraction of detects, 
parameters μ and σ of the lognormal distribution). For all commodities, parameters μ and σ need to be 
present because parametric modelling is set without pooling. When some variances are missing, the 
job is abandoned and a warning message is printed. [option empirical concentration data = no]. 
CRTRREAD: loads data on percent crop treated. 
CHCKS: determines the optimal storage capacity, e.g. chunksize of each cycle within a Monte Carlo 
simulation. In general, the capacity of the internal memory is too small to process very large 
simulations in one time. Therefore, a simulation is performed in cycles. The total number of iterations 
is subdivided in smaller parts and in each cycle a risk assessment is simulated. The chunksize depends 
on the total number (NPNR) of commodities or commodities and processing type combinations: the 
higher the number, the lower the chunksize to avoid storage problems of the internal memory. 
Chunksizes for NPNR <25, for 25 ≤ NPNR ≤ 50 and for NPNR > 50 are set tot 15.000, 10.000 and 
5.000 records, respectively. Calculates the number of cycles (LOOP) as the integer value of the total 
number of simulations divided by storage capacity. The value of the upper quantile of the intake 
distribution needed for the summary report of the upper tail is specified by the user. This value may 
conflict with the storage capacity (S) and simulation size (N). 
The following rules apply: a constant Qmax is defined as S/N*100*2. If the user supplied value is 
smaller or equal than 100 – Qmax, then the current value is replaced by 100 – Qmax, and the percentage 
of the upper tail equals Qmax. This rule applies when the user value is set too low (upper tail is too 
large). On the other hand, when the supplied upper quantile is set too high compared to the total 
simulation size, the upper quantile is reset to the default value 99.0%, which usually is sufficient. 
PFDATREAD: loads available information on processing factors (fk) from xxxx_proc.xls and the 
type of transformation for distribution based factors. If fk,upp and fk,nom are both missing, a value 1 is 
inserted; if fk,upp is missing, it is replaced by fk,nom and vice versa; if fk,nom > fk,upp both values are 
interchanged. For fixed processing factors, fk = fk,upp for commodities on which processing information 
is available. Otherwise a default value 1 is inserted. For distribution based factors, means (= log or 
logit transformed fk,nom) and variances (based on fk,upp  and fk,nom) are calculated. A warning is printed 
when distribution based factors fk cannot be sampled because fk,nom is missing. For those commodities 
fixed values are taken instead. [option use processing factors = yes]. 
PRPFLAB: generates print information, e.g. labels for those commodities that are processed in two or 
more ways. [option use processing factors = yes]. 

'Option MANUAL pooling is chosen'  
'Some groups with variances with df < 10 are heterogene!' 

'Variances and means for df < 10 are pooled manually'  
'Variances are heterogene, Ignore heterogeneity?' 
              'Yes (= pooling)' 

            'No (= stop program)' 
            'Cancel (= no manual pooling for df < 10)’ 

‘Option MANUAL pooling of heterogene means is chosen' 
'Create subgroups (file=xxxx.mu.xls) or set manual pooling is no (no 
pooling)' 
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CNSMPTNSIMU: simulates consumption matrix e.g. selects randomly consumers for a specified day 
[option day restrictions = yes] or selects randomly consumers irrespective of day. Samples available 
days for option Consumers only. Calculates total consumption of each commodity and number of 
consumption occasions. Runs within a For-Loop. 
PFSIMU: calculates matrix with fixed processing factors or factors based on a normal distribution: 
for each consumption occasion a processing factor is simulated. Backtransforms values according to 
applied transformation, e.g. logarithm or logit. Runs within For-Loop. [option use processing factors 
= yes].  
VARFAC: calculates the number of units in a consumption and standard deviation based on 
variability factors. Calculates the maximum number of units (VMAX) of all consumptions 
irrespective of commodity. Generates print information about the commodity with the maximum 
number of units found. Runs within For-Loop. [option use variability factors = yes].  
LORREPLACE: replaces missing values by LOR. All values are replaced or replacement is based on 
the percent crop treated. In the latter case, the sum of the percentage of non-zero’s (detects) and 
number of LORs (replaced missing values) only approximately equals the percent crop treated 
because in assigning LORs to zeros a randomisation step is involved. Runs within For-Loop.[option 
replace non-detects by LOR = yes]. 
E_SIMU: simulates a residue matrix based on empirical data. Residues are simulated for each 
consumption. When variability is incorporated in the model, VMAX times a new residue matrix is 
simulated using the sampled value for a consumption and multiplied with consumer unit portions. If 
option use variability is no, VMAX is set to 1. Prints* a message about variability factors. For 
processed commodities* an expanded matrix is simulated with the number of columns equal to the 
number of combinations of commodities and processing types. Missing values* are replaced by LOR. 
Residues* are multiplied with processing factors. Calculates the total sum of the processing factors 
and the total number of consumption occasions in order to calculate an mean processing factor. The 
intake is calculated and the total number of positive residues. Contains VARFAC, LORREPLACE. 
Runs within For-Loop. [option empirical concentration data = yes]. 
P_SIMU: simulates a residue matrix based on parametric modelling. Residues are simulated for each 
consumption. When variability is incorporated in the model, VMAX times a new residue matrix is 
simulated using the sampled value for a consumption and multiplied with consumer unit portions. If 
option use variability is no, VMAX is set to 1. Prints* a message about variability factors. For 
processed commodities* an expanded matrix is simulated with the number of columns equal to the 
number of combinations of commodities and processing types. Missing values* are replaced by LOR. 
Residues* are multiplied with processing factors. Calculates the total sum of the processing factors 
and the total number of consumption occasions in order to calculate an mean processing factor. The 
intake is calculated and the total number of positive residues. Contains VARFAC, LORREPLACE. 
Runs within For-Loop. [option empirical concentration data = no]. 
RESICALC: generates summary statistics for output. Runs within for-loop. 
COLLECT: collects intakes. Collects* day numbers, consumer codes and ages. Runs within For-
Loop. 
T4ACALC: performs data processing in each cycle to generate the upper quantile of the intake 
distribution and consumer characteristics of the top 10 intake. Simulation results of two successive 
cycles are collected in new structures with two times the length of a chunksize. Then, calculations are 
performed and various data structures with double length needed to produce output are sorted. The 
intake results needed to summarise the upper quantile of the intake distribution are saved in structures 
with the same length as a chunk. In the next cycle, these sorted results and new simulation results are 
collected again and all calculations are repeated. Note that the process of simulating in cycles restricts 
the value of the upper quantile. Specifying a too large upper tail may supersede the user supplied 
value. See also procedure CHCKS. Runs within For-Loop. 
T4BCALC: performs calculations to summarise the total intake distribution. Runs within For-Loop. 
%COLLECT: stores intakes. Stores* day numbers, consumer codes and ages. 
GAMMA: performs power transformation on intake distribution. [Long term exposure = yes]. 
VCREML: estimates variance components [Long term exposure = yes]. 
%INTERPOLATE: interpolates backtransformed chronic percentiles according to Nusser. [Long 
term exposure = yes]. 
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NUSSER: Estimates long term exposure based on power or logtransformed intakes using a grafted 
polynomial. Long term exposure is estimated for the number of non-detects smaller than 1%. Prints 
percentiles and cumulative percentiles for a specified value (years). Contains GAMMA, VCREML, 
%INTERPOLATE, HTMHEAD, HTMCODE, HTMGEN, HTMBUT, HTMPRINT (nusser.dat, 
nusserdiag.htm, percentilesnusser.dat, percentilesnusser.htm)4 [Long term exposure = yes]. 
TAB1PRINT: prints a summary of the data used for simulating consumptions and residues. Mean 
consumptions are averaged after day* and/or age* restrictions. Printed output is on commodity, 
average consumption for all consumers and consumers only, number of consumer occasions, the 
average residue (corrected for processing* and after missing values have been replaced by the LOR*), 
the number of non-zero residues and the total number of samples (non-zero and zero residues). The 
same information is printed for commodities which are processed* in more than one way. 
TAB2PRINT: prints a summary of the simulation results. Printed output, see TAB1PRINT.  Three 
columns are added: the first describes the difference (%) compared to the average consumption of the 
data and the second the difference (%) compared to the average residue of the data, the last gives the 
average of the processing factors per commodity corrected for consumption ratio’s*. This table is 
used to compare the simulation results with the summarised data. Large discrepancies between both 
tables indicate that simulation results are variable. 
TAB3PRINT: prints percentiles, the maximum and average intake. Contains HTMHEAD, 
HTMCODE, HTMGEN, HTMBUT, HTMPRINT (percentiles.htm, percentiles.dat).  
T4APRINT: prints characteristics per commodity of the upper quantile of the intake distribution with 
the corresponding intake. Printed output is relative contribution per commodity, average concentration 
per commodity, percentage of each commodity with a residue and the average concentration on 
commodities with a residue. The same information is printed for commodities which are processed* 
in two or more ways. Contains HTMHEAD, HTMCODE, HTMGEN, HTMBUT, HTMPRINT, 
HTM1MOUSE, HTM2MOUSE (averconccomres.htm, averconccomres.dat, uppersens.htm).  
T4BPRINT: prints characteristics per commodity of the total intake distribution. Printed output, see 
T4APRINT. Contains HTMHEAD, HTMCODE, HTMGEN, HTMBUT, HTMPRINT, 
HTM1MOUSE, HTM2MOUSE (totalsens.htm). 
TAB5PRINT: prints the intake per commodity of the 10 consumers with the highest total intake and 
bodyweight and age. The same information is printed for commodities which are processed in two or 
more ways*. 
TAB6PRINT: prints the consumption per commodity of the 10 consumers with the highest total 
intake. The same information is printed for commodities which are processed in two or more ways*. 
TAB7PRINT: prints residue levels per commodity of the 10 consumers with the highest total intake. 
The same information is printed for commodities which are processed in two or more ways*. 
PLTOTDISTR: plots a graph of the total distribution of positive intakes. Contains HTMHEAD, 
HTMCODE, HTMGEN, HTMBUT, HTMPRINT (totaldistr.htm, totaldistr.dat). 
PLUPDISTR: plots a graph of the upper tail of the intake distribution. Contains HTMHEAD, 
HTMCODE, HTMGEN, HTMBUT, HTMPRINT (upperdistr.htm, upperdistr.dat). 

5. 2.Website related procedures in MCRA 
By setting the textstructure WEB in MCRAddmmyyyy.gen to ‘yes’, the program may be used as an 
internet application. The program generates different types of output that can be viewed on a number 
of browsers. To communicate with the browser, these output is written as HTML-script. For the 
webversion of the program some special procedures are written in order to support functionality at the 
client-side. 
WARNING: warning message ‘Fatal error occurred, see logfile’ 
HTMPRINT: pop-up menu to request output 
HTMHEAD: header and definitions HTML-pages 
HTMCODE: definitions cabinet file and linkage package ComponentOne ActiveX controls 
HTMGEN: definitions chartarea ComponentOne ActiveX controls 
HTM1MOUSE: definitions mouse control ComponentOne ActiveX controls 

                                                      
4 Files in parentheses e.g. ####.htm and ####.dat are generated for internetapplications of the program. 
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HTM2MOUSE: definitions mouse control checkbox ComponentOne ActiveX controls 
HTMBUT: definitions button onclick ComponentOne ActiveX controls 

5. 3.Specification of inputfiles 
In the next paragraphs the format of files needed for a Monte Carlo risk assessment are described.  

5.3.1.Basic files 
MCRAddmmyyyy.gen: Monte Carlo Risk Analysis program, for GenStat release 5.4.2, 5th edition. 
Updates releases of the program are identified by the date string ddmmyyyy. 
 
MCRALIB: backingstorefile containing MCRA-procedure-library . 
 
MCRA-input.xls: specification spreadsheet for inputs, model and output. 
 
individuals.lis: data on consumer characteristics (personal no., age, weight) 
Example: 
100       4  10 
101       3   9 
102       2   8 
104       3   9 
105       3   8 

5.3.2.Standard data files 
Replace ‘####’ by code for residue e.g. IPRO_res.lis for Iprodione concentration data. Note: missing 
values are indicated by an ‘*’ (files with extension .lis only). 
 
####_con.lis: consumption data and processing code (personal no., day, commodity code (5 columns), 
consumption, processing code) 
Example: 
100 1 1 07 01 011 01    50.16000   3 
101 1 1 08 05 002 01    80.96400  13 
102 1 1 08 05 004 01   131.54400   3 
102 2 1 09 03 005 02    60.20200  15 
104 1 1 08 04 002 02      .36000   5 
 
####_res.lis: positive residue concentration on each commodity (commodity code (5 columns), 
concentration) 
Example: 
1 07 01 010 01  .140 
1 07 01 010 01  .190 
1 07 01 011 01  .030 
1 07 01 011 01  .140 
1 08 01 001 01  .600 
 
####_nos.lis: total number of samples (detects and non-detects) on each commodity (commodity code 
(5 columns), no. of samples) 
Example: 
 1 07 01 010 01   101 
 1 08 01 001 01   161 
 1 07 01 011 01   105 
 1 08 01 002 01     9 
 1 08 01 005 01   280 
 
####_pro.lis: commodity code, labels and a column indicating whether the residue is allowed (1) or 
not (0) for each commodity (commodity code (5 columns), indicator, label). Note: the last two 
columns (indicator and labels) are separated by one space (obligatory). 
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Example: 
 1 07 01 010 01  0⊔BOON, (PRONK/SLA/SNIJBOON) 
 1 07 01 011 01  0⊔SPERZIEBOON 
 1 08 01 001 01  0⊔WITLOF 
 1 08 01 002 01  0⊔ANDIJVIE  
 1 08 01 005 01  0⊔KROPSLA, BINDSLA 
 
Each commodity is characterised by a commodity code built hierarchically from 5 numbers:  
1 - productfile number, 1 character  
2 - productgroup number,  max. 2 characters 
3 - productsubgroup number, max. 2 characters 
4 - productnumber, max. 3 characters 
5 - productquality number, max. 2 characters 
####_cmp.lis: residue label (code (3 columns), label) 
Example: 
11 5 1 IPRODION (=GLYCOFEEN) 

 
Each residue is characterised by a code built hierarchically from 3 numbers 
1 – residue group number 
2 – residue subgroup number 
3 – residue number 
 
For more details, see Van der Voet et al. (1999). 

5.3.3.Optional data files 
Replace ‘####’ by code for residue. Note: in Excel (.xls), missing values are indicated by a space or 
an ‘*’. 
 
####_histo.xls: histogram data 
Example: 

 
 
####_sum.xls: summary data 
Example: 

 
 
####_crtr.xls: data on percent crop treated 
Example: 
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####_proc.xls: nominal and upper values for processing factors 
Example:  

 
 
proccode.xls: information on processing codes and names 
Example: 

 
 
####_varf.xls: variability factors 
Example: 

 
 
Files ####_crtr.xls and ####_proc.xls may contain codes of commodities that are not consumed or not 
present in file ####_pro.lis. MCRA checks which values are present and replaces missing values 
according to a worst case scenario. 
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